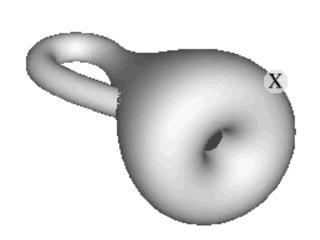
Visual Computations, Geometry, and Visual Cortex

R. Coifman, V. Rokhlan, and Steven W. Zucker

Yale University

The Motivation for Edge Detection

Edges are considered to be stable features of objects in images, e.g., with respect to variable illumination.



An image of a Klein bottle.

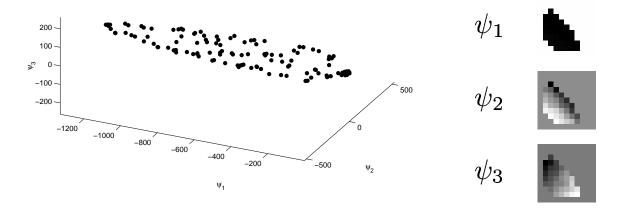
The same object illuminated differently.



The patch X under different illuminations.

The Motivation for Edge Detection

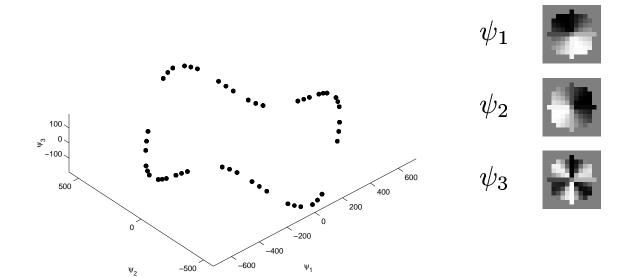
In image space, the edge patches lie near a low-dimensional manifold.

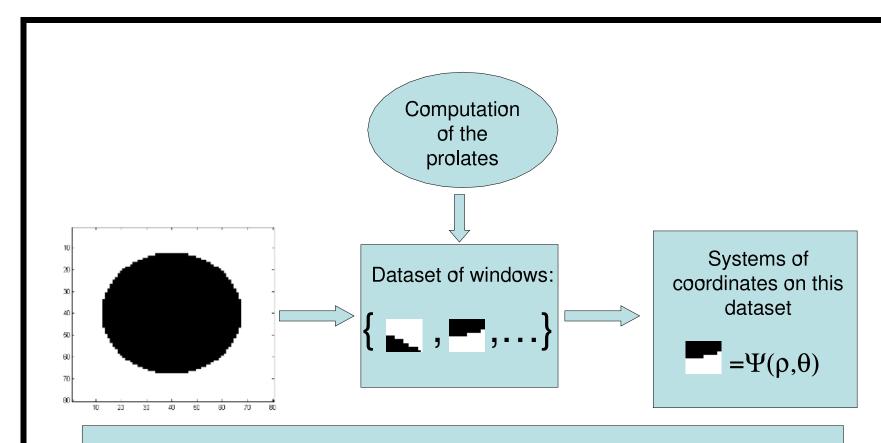


The Edge Manifold

A simple edge model:

$$f(x, y; \theta) = \begin{cases} 1 & \text{if } -\sin(\theta)x + \cos(\theta)y > 0\\ 0 & \text{otherwise} \end{cases}$$

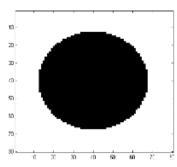


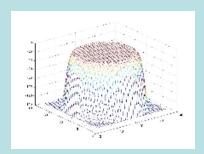


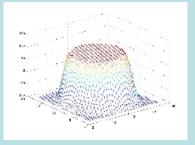
Given an image:

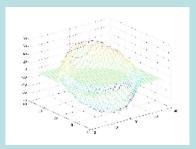
- 2. Split this image into local patches: to each pixel of the image, associate its 8x8 pixel neighborhood.
- 3. Treat these windows as a dataset of points in 64 dimensions. Compute the prolates on this set.
- 4. Find local coordinate systems on the set.

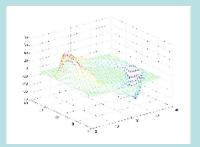
A simple example: black disk on white background:





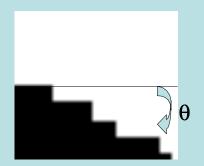




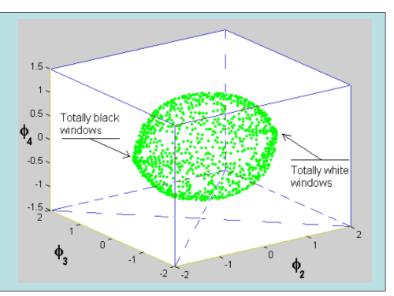


Above are represented the first 4 prolates in the image space (image domain vs. prolate value).

- 2. Prolates 1 and 2 capture the ratio of black pixels over white pixels.
- 3. Prolates 3 and 4 capture the angle $\boldsymbol{\theta}$
- 4. Locally, 2 prolates are sufficient to describe the data

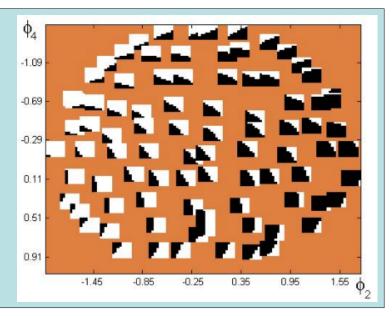


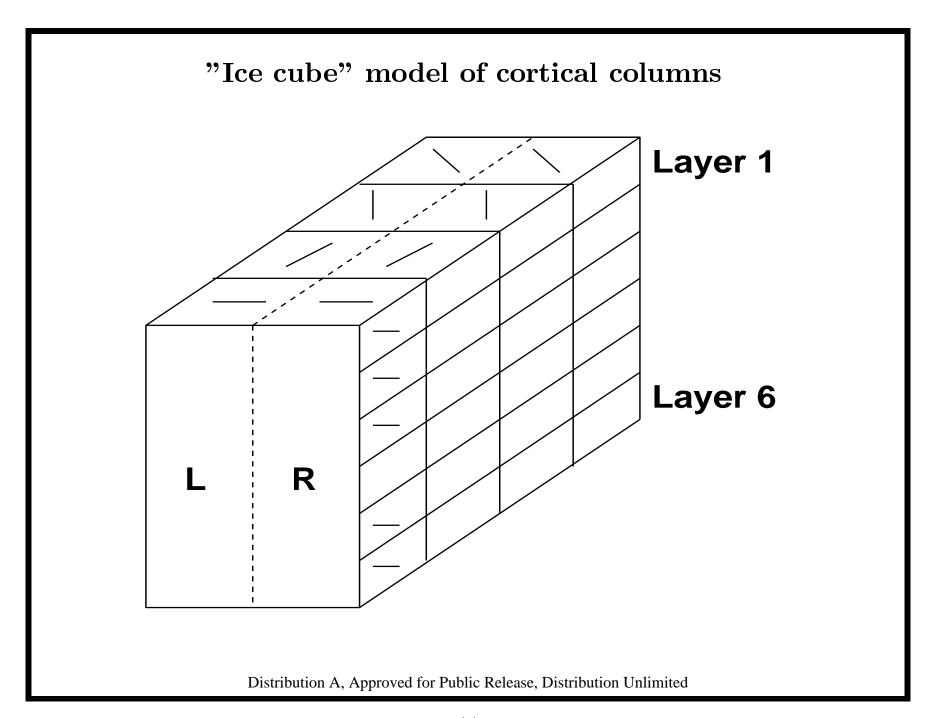
To each point in the dataset (or to each pixel in the image) we associate its coordinates in the (phi2,phi3,phi4) system.



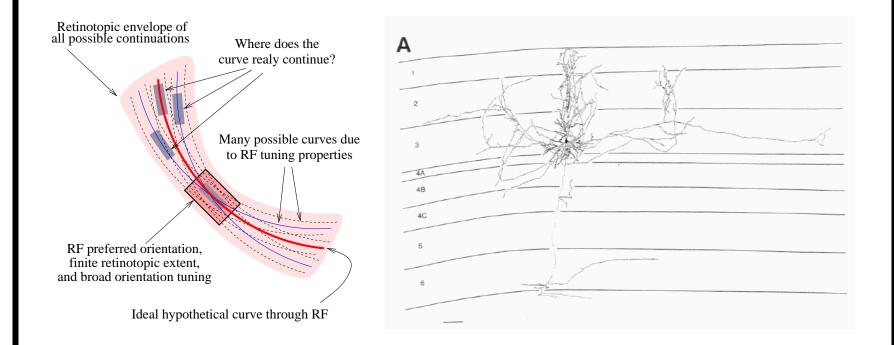
Plot of a selected subset of windows in (phi2,phi4)

- Phi2 measures the proportion of black pixels
- Phi4 measures the orientation of the edge

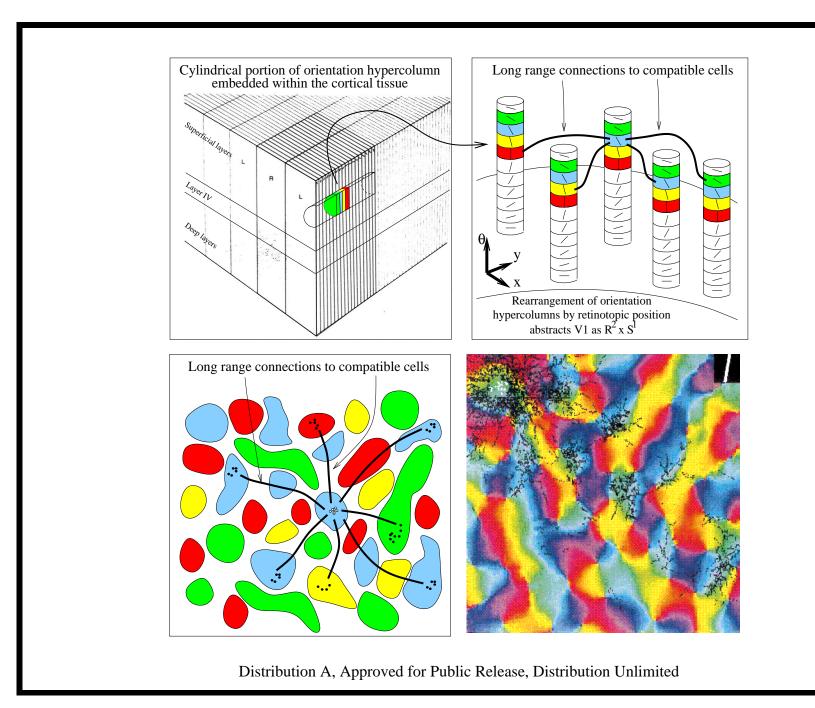




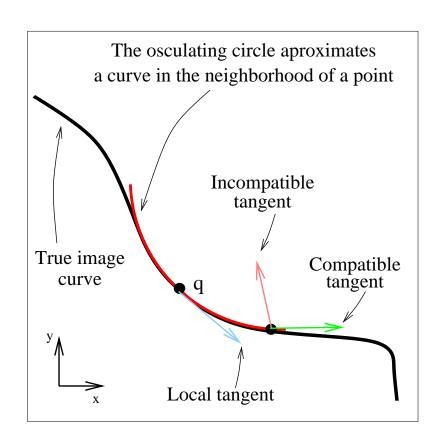
Curve coherence: computational and biological perspectives

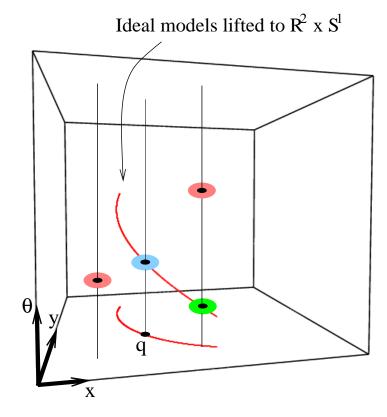


Gilbert, Neuron 1989 Gilbert & Wiesel, J. of Neuroscience, 1983



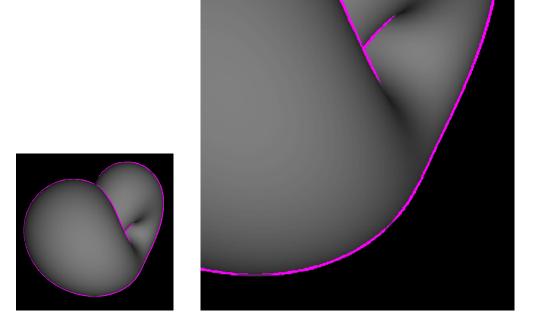
Cocircularity coherence in the orientation hypercolumn $(XY\theta)$ architecture



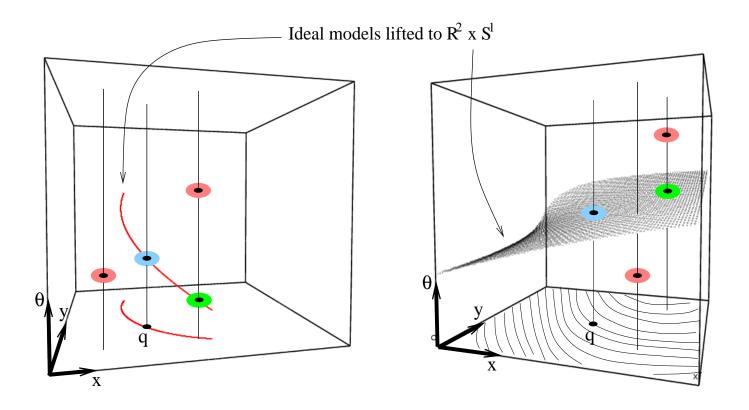


Cocircularity-based curve inference Distribution A, Approved for Public Release, Distribution Unlimited

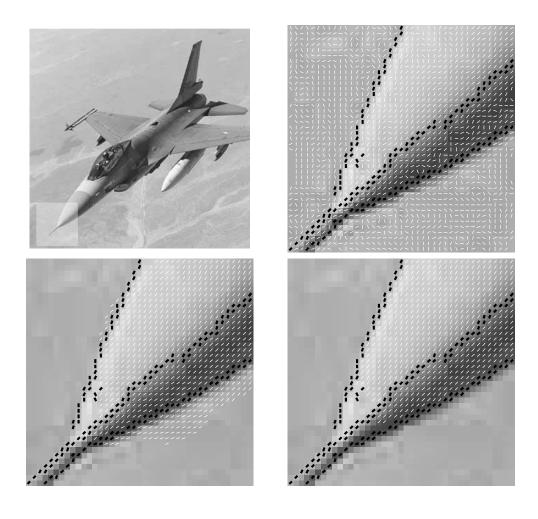
Cocircularity-based curve inference



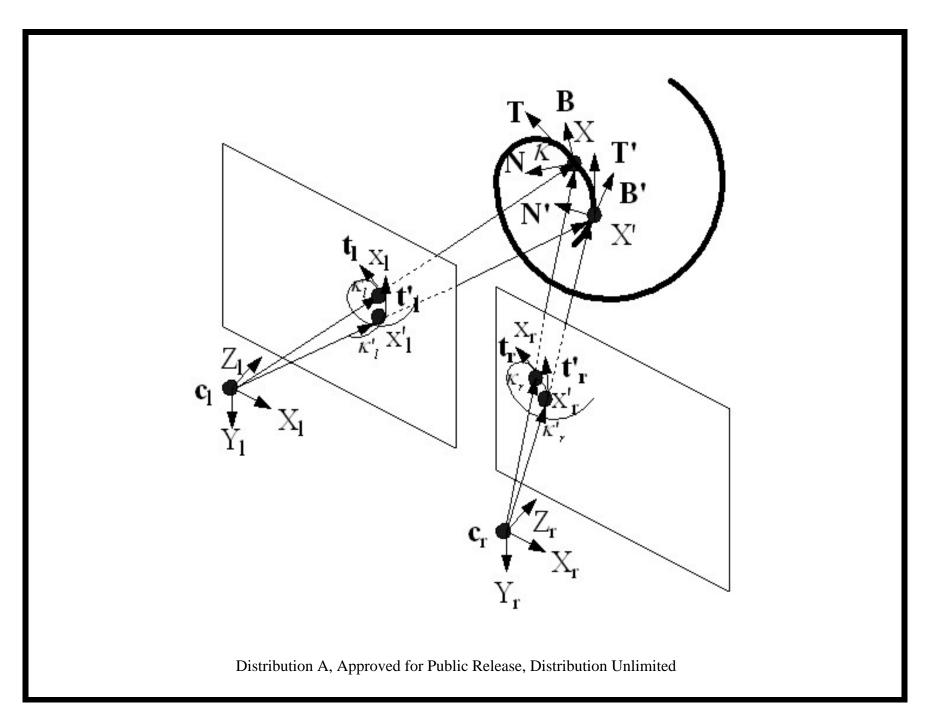
Visual flow coherence in the orientation hypercolumn $(XY\theta)$ architecture

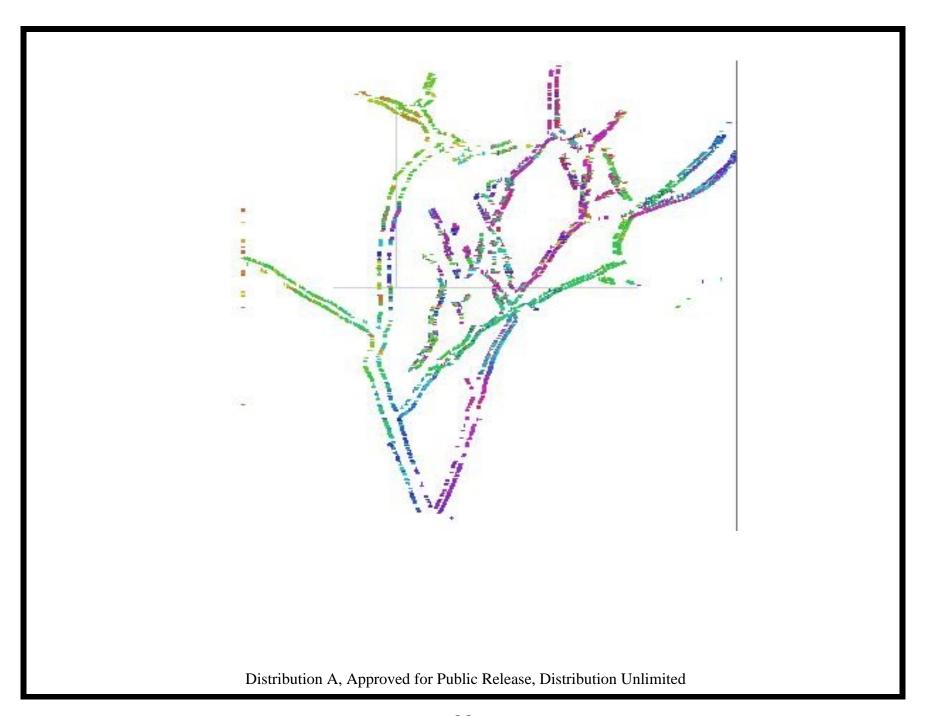


Shading flow field relaxation

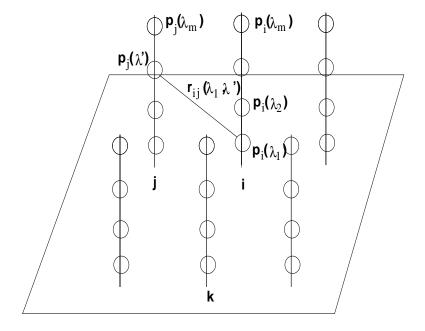


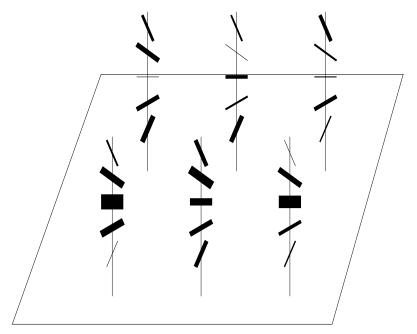
Distribution A, Approved for Public Release, Distribution Unlimited





Computational abstraction





"Games Neurons Play"

Consider neurons as "players" in a polymatrix game. Their strategies are whether to fire or not to fire.

Relaxation Labeling	Game Theory	Notation
nodes	players	i,j,,k
labels	strategies	λ
probabilistic labeling	mixed strategy	$p_i(\lambda)$
compatibilities	payoff matrix	$r_{i,j}(\lambda,\lambda')$
consistent labeling	Nash equilibrium	$\operatorname{Grad} A(P) = 0$

Goal: select labels (strategies) λ at each node (neuron) to extremize:

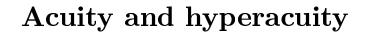
$$A(P) = \sum_{i,\lambda,j,\lambda'} p_i(\lambda) r_{i,j}(\lambda,\lambda') p_j(\lambda')$$

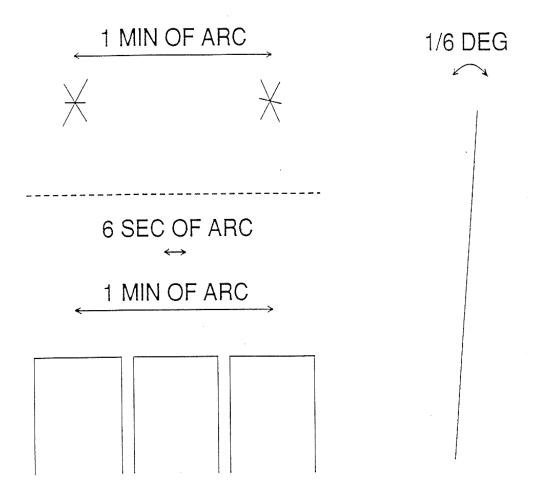
such that

$$\sum_{\lambda} p_i(\lambda) = 1; 0 \le p_i(\lambda) \le 1$$

Computational Strategies for LCP's

Computing with cliques of neurons Distribution A, Approved for Public Release, Distribution Unlimited





Hyperaccurate receptive fields and reliability

